Matrix norms

In [ ]:
import numpy as np
import numpy.linalg as la
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline

# https://matplotlib.org/users/customizing.html
# print(plt.style.available) # uncomment to print all styles
import seaborn as sns
sns.set(font_scale=2)
plt.style.use('seaborn-whitegrid')
mpl.rcParams['figure.figsize'] = (10.0, 8.0)

Here's a matrix of which we're trying to compute the norm:

In [ ]:
n = 2
A = np.random.randn(n, n)
A

Recall:

$$||A||=\max_{\|x\|=1} \|Ax\|,$$

where the vector norm must be specified, and the value of the matrix norm $\|A\|$ depends on the choice of vector norm.

For instance, for the $p$-norms, we often write:

$$||A||_2=\max_{\|x\|=1} \|Ax\|_2,$$

and similarly for different values of $p$.


We can approximate this by just producing very many random vectors and evaluating the formula:

In [ ]:
xs = np.random.randn(n, 1000)
xs.shape

First, we need to bring all those vectors to have norm 1. First, compute the norms:

In [ ]:
p = 1
norm_xs = np.sum(np.abs(xs)**p, axis=0)**(1/p)
norm_xs.shape

Then, divide by the norms and assign to normalized_xs:

Then check the norm of a randomly chosen vector.

$${\rm normalized\_xs}= \frac{x}{||x||_p}$$

In [ ]:
normalized_xs = xs/norm_xs
la.norm(normalized_xs[:, 99], p)

Let's take a look at all normalized_xs vectors

In [ ]:
plt.plot(normalized_xs[0], normalized_xs[1], "b.")
plt.gca().set_aspect("equal")

Now apply $A$ to these normalized vectors:

$${\rm A\_nxs}= A\frac{x}{||x||_p}$$

In [ ]:
A_nxs = A.dot(normalized_xs)

Let's take a look again:

In [ ]:
plt.plot(normalized_xs[0], normalized_xs[1], "b.", label="x")
plt.plot(A_nxs[0], A_nxs[1], "r.", label="Ax")
plt.legend()
plt.gca().set_aspect("equal")

Next, compute norms of the $Ax$ vectors:

$${\rm norm\_Axs}= ||Ax||_p$$

In [ ]:
norm_Axs = np.sum(np.abs(A_nxs)**p, axis=0)**(1/p)
norm_Axs.shape

What's the biggest one?

In [ ]:
np.max(norm_Axs)

Compare that with what numpy thinks the matrix norm is:

In [ ]:
la.norm(A, p)